
Ludwig-Maximilians-Universität München

Institut für Informatik

F O R M A L V E R I F I C AT I O N
O F I N T E R A C T I V E V I S U A L

N O V E L S
Analysing the Structure of Interactive Stories to Find

Out What Makes Them Fun

Elisabeth Lempa
elisabeth.lempa@posteo.net

A thesis presented for the degree of
Master of Science

Supervisor: Prof. Dr. Gidon Ernst
Submission Date: 04.04.2024

abstract

What makes visual novels fun? In this work, we create metrics to operationalise
the contribution of visual novel story structure to video game enjoyment in five
different categories. We present a formal verification tool for the Ren’Py language,
Ren’Py being one of the most popular visual novel engines. This formal verification
tool allows to specify certain properties about a Ren’Py program, and verify whether
they hold on every possible path through the game. We give formal specifications of
the metrics we created. Finally, we evaluate the metrics’ ability to distinguish visual
novels with regards to the categories the metrics each were based on, and present
additional applications of the tools we developed.

contents

1 Introduction 4

2 Background and Related Work 5

2.1 Video Games and What Makes them Fun 5

2.1.1 Visual Novels . 5

2.1.2 The Ren’Py Engine . 7

2.1.3 What makes games fun? . 8

2.2 Theoretical Background . 9

2.2.1 Temporal Logic Model Checking 9

2.2.2 Term Rewriting and Maude . 10

3 Contribution 15

3.1 Operationalised Metrics for Game Design Principles 15

3.2 Formalisation of Metrics . 19

3.3 R’Ast: A Ren’Py to Maude Translator 22

3.4 MiniRenRun: A Maude Ren’Py Verification Tool 30

4 Evaluation 37

4.1 Experimental Setup . 37

4.2 Experiment Results . 38

4.3 Discussion . 42

4.3.1 Interpretation of the Results . 42

4.3.2 Applications . 44

5 Conclusion and Future Work 45

a Appendix 46

References 47

acknowledgements

A lot of authors write that their work would not have been possible without other
people; I feel like nobody has ever meant it as much as I do right now.
First and foremost, I thank my supervisor Dr. Gidon Ernst for his unending patience,
gentle persistence, and continuous guidance and support. Not only did he give me
the chance to write a thesis about a topic that is so incredibly close to my heart, he
also handled it with so much grace and kindness when I went through an entire
character arc while I wrote it. I fear that I was not an easy student to supervise, and
I think of myself as very lucky to have had a supervisor who was more than up for
the task.
I also want to thank my wonderful friend Jonathan for his plentiful advice. He
would have made an amazing computer scientist, but sadly, he instead decided to
study things that are actually hard, like genders, education and occasionally law.
A lot of the formulas in this work were looked over by one of my oldest and dearest
friends Dr. Lukas Miaskiwskyi (mit k), who left academia (and Germany) behind,
but came to help every single time when I flashed the “finally” operator sign on the
night sky over Utrecht. Lukas, the marvel is in your court.
Dr. Niels Heller and his notes, always adhering to the strict Bry’ian school of writing,
were also an essential part of making this thesis make any sense at all. Had my thesis
been a cup of yoghurt, Niels would have put it inside a bag at the cash register.
I also want to thank Odin, my pair programming partner in crime, my relentlessly
professional consultant, whom I forced to look at so much Maude documentation
with me that I am positive that the rail switch software industry will soon pivot to
using term rewriting logic. As they should!
I also want to thank my very last minute beta readers: My sister Katharina, and my
friends Eva and Thomas – I am deeply lucky to have so many people in my life who
care this deeply about precise language –, and my helpful LaTeX fairy Tobias. Every
single one of you was crucial. All of you jumped in at such short notice. I know
everyone says this, but I’m right: I have the best friends in the world. Thank you.
I would also like to thank the entire Ren’Py community for making and playing
visual novel games. I’m glad to be part of such a diverse, vibrant, welcoming com-
munity. Literally everyone who was ever written a single line of Ren’Py: I see you,
and you’re awesome.
I thank Ann Leckie for writing the Imperial Radch series, which is a series of books
I lifted the names “Breq”, “Seivarden” and “Zeiat” from, and which has done more
for my mental health than should ever be expected from a trilogy.
And finally, thanks Jan for supporting me through this. Thanks for suggesting I quit
all of this and go pursue my other, even sillier dreams instead. I’m glad I didn’t
listen. I love you.

selbstständigkeitserklärung

Hiermit versichere ich, dass die vorliegende Arbeit von mir selbstständig verfasst
wurde und dass keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
wurden.

Diese Erklärung erstreckt sich auch auf in der Arbeit enthaltene Graphiken, Zeich-
nungen, und bildliche Darstellungen.

Insbesondere wurden keinerlei Hilsmittel eingesetzt, die auf generativer AI basieren.

04.04.2024,
Datum, Unterschrift

statement of originality
I hereby confirm that I have written the accompanying thesis by myself, without con-
tributions from any sources other than those cited in the text and acknowledgements.

This applies also to all graphics, drawings and images included in the thesis.

I did not use any tools based on generative AI.

04.04.2024,
Date, Signature

introduction 4

1 introduction

Visual Novels are a form of interactive media that blur the lines between literature
and computer games. They can tell stories that are various degrees of interactive
across all sorts of genres. With this thesis, we want to add to the conversation about
what makes video games fun by creating and evaluating formalised operationalised
metrics to measure the impact of a visual novel’s narrative structure on the enjoy-
ment that is had when playing the visual novel.

This thesis has five chapters, the first of which is an introduction, which you’re
reading right now.
Chapter 2 provides relevant background information on the nature of visual novels
and the Ren’Py engine in Sections 2.1.1 and 2.1.2. It also gives brief a overview of
the relevant literature on video game enjoyment in Section 2.1.3, and presents some
related work in analysing Ren’Py code at the end of Section 2.1.2. Finally, it sum-
marises the theoretical and mathematical concepts the formalisation of the metrics
is based upon, and gives a brief introduction to the Maude rewriting language in
Sections 2.2.1 and 2.2.2.
Chapter 3 describes our contribution, beginning with the operationalisation and for-
malisation of metrics from different video game enjoyment categories in Sections
3.1 and 3.2. It continues by presenting the tools we developed to measure the for-
malised metrics in Section 3.3, where the Ren’Py-to-Maude translation tool R’Ast is
presented, and Section 3.4, where a Maude module specifying an interpreter for a
Ren’Py language fragment is presented.
Chapter 4 describes the process of evaltuating the formalised criteria to see whether
or not they were able to differentiate on a sample of visual novels. Section 4.1 de-
scribes the experimental setup, and Section 4.2 presents its result. Finally in Section
4.3, the results are discussed. We draw conclusions and describe their limitations,
and describe additional applications of the metrics we described and the tools we
presented. The final chapter, Chapter 5 is the conclusion. It also includes some
pointers for future work based on this thesis.

background and related work 5

2 background and related work

This chapter will describe the domain of this work (video games, visual novels, and
the Ren’Py visual novel engine) and give an overview of related work on some em-
pirical methods of describing video game enjoyment, as well as other tools analysing
Ren’Py source code in sections 2.1. In sections 2.2.1 and 2.2.2, we give some back-
ground on the mathematical and theoretical foundations of the work: Model Check-
ing, the temporal logic LTL, and the term rewriting system Maude.

2.1 Video Games and What Makes them Fun

This section will will briefly give an overview on the literature on measuring people’s
fun in video games. It will also describe what the genre of visual novels comprises,
and how it differs from other video game genres. It will also provide a brief intro-
duction to the Ren’Py visual novel engine.

2.1.1 Visual Novels

Visual novels are a form of digital interactive fiction. There is some debate about
whether or not they really fit into the broader category of video games, as they can
often lack certain features that some describe as essential, however, practically, they
are sold on gaming platforms like Steam or itch.io, where they are categorised as
games.
The genre relies a lot on presenting a narrative in the form of written text to the
player. The main form of interaction the player conducts with the game being them
simply advancing the text, and occasionally making a choice that can influence the
story’s progression. (Often, they get to pick the main Character’s dialogue or action
in certain situations.)
They are distinguished from text-based adventure games of old through the use of
graphics, as the term “visual” suggests. Typically, character sprites are shown in
front of a background, showcasing their emotion or expression. Important moments
in the narrative are sometimes embellished with dedicated CGs (“Computer Graph-
ics”), usually hand drawn images that take up the entire screen. They also typically
include sound and music, sometimes going as far as full voice acting.
The visual novel genre has historically been very popular in Japan, which has been
related to the popularity of Anime. The influence of anime as a medium on the
genre of visual novels is undeniable, with many visual novels sharing showing obvi-
ous connections in theme and art style. [Cavallaro, 2009]
The visual novel market is still very much a small niche of the huge video game
market, but has been growing in popularity in the last few years. [Geoffrey Bunting,
2023]
Because visual novels are often technically simple compared to other video games
that attempt to simulate expansive 3d worlds and strive for photorealistic graphics,
the production costs of visual novel games are rather low. This makes visual novel

background and related work 6

development especially feasible for small teams and even solo developers. [Lebowitz
and Klug, 2011a]

visual novels as serious games Specialised tools such as the Ren’Py language
facilitate development of visual novels without in-depth programming knowledge.
Because of this lower barrier of entry and lower production costs compared to other
video game genres, visual novels are also highly represented within serious games
and commonly used for e-learning applications.[Øygardslia et al., 2020] [Lochman,
2020] This also means that visual novels are commonly created by people who are
not game designers or programmers.

interactive stories As mentioned before, visual novels often allow the player
to make choices that influence the progression of the story. Stories that are depen-
dent in such a way on the recipient’s collaboration are often called interactive stories.
In the following, we will call our recipient “the player”, but we note that interactive
stories can also be present in other forms of media, such as literature and film.

[Lebowitz and Klug, 2011a] further differentiate between interactive traditional sto-
ries (largely linear stories with small parts that change based on player interaction),
multiple-ending stories, (stories that are largely linear but have multiple different end-
ings) and branching path stories (stories that diverge into branching paths earlier).
Visual novels can be any of those.

playthroughs and endings Because visual novels commonly have multiple
distinct paths and often multiple endings, they can be played multiple times with
the expectation to see some new content each time. One of these runs through the
game from start to finish is often called a “playthrough”.

Figure 1: Screenshot of the Visual Novel Kill The Rabbit [CODI/CLAUDIO, 2024]. The player
is explicitly told that they have reached a bad ending.

A lot of interactive stories feature bad endings that are explicitly announced to the
player. Furthermore, a lot of visual novels have dark or serious subject matters, and

background and related work 7

there is significant overlap with the horror genre. Popular examples of horror visual
novels are Doki Doki Literature Club [2017] and Slay the Princess [2023].

2.1.2 The Ren’Py Engine

Figure 2: A screenshot from the visual novel Murder on the Insect Express.

Ren’Py is a visual novel engine used by visual novel developers to create visual
novel games by writing code in the Ren’Py scripting language. It has a fairly low
barrier of entry due to a fairly straightforward screenplay-like style that is easy to
learn by non-programmers. It also ships with some tools for no-code development
such as the interactive director.1 However, it is built on Python and allows advanced
developers to fully utilise basically all features of the Python language, making it a
tool suitable for both advanced programmers and non-programmers alike.

Figure 3: A screenshot from the visual novel Murder on the Insect Express, showing an inter-
active menu offering the player two choices.

1 https://www.renpy.org/doc/html/director.html

https://www.renpy.org/doc/html/director.html

background and related work 8

ren’py games When playing a Ren’Py game, the basic user experience consists
of reading lines of text being shown one by one on the screen. Typically graphics
depicting the scene and characters will be shown, as well. The user can advance to
the next line by clicking on the screen or pressing a button.

At certain points in the story, the user will typically be allowed to select one of
multiple dialogue options by selecting them from an in-game menu. An example for
such an in-game menu can be seen in Figure 3.

tools for analysing ren’py code Ren’Py Graph Viz [Quimerc’h, 2022] is a tool
that can be used to create graphical visualisations of the different branching paths
a Ren’Py story can take. However, it does not account for (among other things)
Python variables being set, making it incapable of analysing stories that use such
variables in the story design. A brief guide on how to use Python Profilers2 to
analyse Ren’Py games was published on the Ren’Py forums [DizzyKa, 2017]. This is
useful mainly for performance analysis of python programs in general and does not
come with any utility for specific analysis of Ren’Py games with regards to visual
novel domain-specific concerns like story strucure.

2.1.3 What makes games fun?

While there is little debate about the fact that enjoyment is an important reason why
people play video games, there is no broad consensus on what exactly makes a video
game enjoyable. Video game reviews attempting to judge whether or not a game is
good are often controversely discussed among gamers [Sharp, 2018], such as the
infamous IGN review of the game Pokémon Alpha Sapphire and Omega Ruby [Plagge,
2014] where the game was slighted for containing “too much water”, which sparked
many discussions about that statement’s true meaning and critical merit.

player types Richard Bartle, creator of the early text based massively multiplayer
online game MUD1, famously created a taxonomy of players [Bartle, 1996], categoris-
ing players into four distinct groups that describe the motivation that makes the
game fun for them. There have been many more attempts to create such categories.
[Hamari and Tuunanen, 2014]
When it comes to creating empirical measures for game enjoyment of visual novels,
there are two problems with the categorisations mentioned above. Firstly, while the
classification of players into the distinct groups is based on empirical research, the
underlying model, i.e. the categories themselves are typically based on philosophical
contemplation or rhetorical analysis, and not rooted in empirical science. Secondly,
Bartle based his category on two axes for game enjoyment, one of which is the re-
lationship to other players. This makes sense because he was specifically speaking
about multiplayer games. This focus on the social elements of play is prevalent in a
lot of the literature that attempts to find similar categorisations.

2 https://docs.python.org/2/library/profile.html

https://docs.python.org/2/library/profile.html

background and related work 9

a comprehensive model [Schaffer and Fang, 2018] attempt to create a com-
prehensive list of sources of computer game enjoyment through a broad literature
review, and used empirical methods to refine this list into 34 distinct categories.

Because this model presents itself as the most comprehensive of the ones reviewed
while still being solidly grounded in empirical research, we chose these 34 categories
as a basis for the following work.

2.2 Theoretical Background

We briefly explain temporal logic model checking as well as the term rewriting sys-
tem Maude, which were used to specify and test the operationalised metrics we
construct and formalise in Sections 3.1 and 3.2.

2.2.1 Temporal Logic Model Checking

Model checking is a method of formally verifying whether a system adheres to a cer-
tain specification. To achieve this, both the system and its specification are modelled
in a formal language. In this work, we use a Kripke structure to represent the possible
configurations of our system and changes thereof, and the Linear Temporal Logic
language LTL to specify properties we are interested in verifying. The following ex-
planations of Kripke structures and LTL-model checking was adapted from [Clarke
et al., 2018]’s Handbook of Model Checking.

kripke structures Kripke structures are finite directed graphs whose vertices
are labeled with sets of atomic propositions. The vertices of this graph represent
“states”, the edges represent “transitions” between such states. Formally, a Kripke
structure over a set A of atomic propositions is a 3-tuple K = (S, R, L) where S is
a finite set of states, R ⊂ S × S is the (total) transition relation, and the labeling
function L : S → 2A maps each state to a set of atomic propositions, signifiyng that
those are the propositions that hold true in that particular state.
We can see that the transition relation R shows us all possible state changes the
system can possibly undergo. A specific behaviour of the system can therefore be
described by a path through the graph, represented by a finite or infinite sequence
π = s0, s1, s2, ... of states such that (si, si+1) ∈ R for all i ≥ 0. Because the transition
relation is total, every finite path can be extended to an infinite path.

linear temporal logic Linear Temporal Logic is a modal temporal logic with
modalities referring to points in time in the future. Assuming that p ∈ A is an atomic
proposition and φ1, φ2 are two LTL formulas, the set of all LTL-formulas can then be
constructed recursively with the following definition:

φ := true | false | p | ¬φ1 | φ1 ∨ φ2 | φ1 ∧ φ2 | ◦ φ1 | ♢ φ1 | □ φ1 | φ1 U φ2 | φ1 W φ2,

where the operators ∧,∨,¬ are known from propositional logic. The operators ◦
(“next”), ♢ (“finally”), □ (“globally”), U (“until”), and W (“weak until”) are tempo-

background and related work 10

ral operators.

An LTL formula can now be satisfied by an infinite sequence of π = s0, s1, s2, ... of
states associated with sets of atomic propositions by the labelling function L. For-
mally, the satisfaction relation ⊨ between such a path and an LTL formula can be
defined as follows:

• π ⊨ p iff p ∈ L(s0)

• π ⊨ ¬φ iff π ⊭ φ

• π ⊨ φ ∨ ψ iff π ⊨ φ or π ⊨ ψ

• π ⊨ φ ∧ ψ iff π ⊨ φ and π ⊨ ψ

• π ⊨ ◦φ iff s1 ⊨ φ

• π ⊨ ♢ φ iff there exists an i ≥ 0 such that si ⊨ φ

• π ⊨ □ φ iff for all i ≥ 0 it holds that si ⊨ φ

• π ⊨ φU ψ iff there exists an i ≥ 0 such that si ⊨ φ

and for all 0 ≤ j < i it holds that sj ⊨ ψ

• π ⊨ φW ψ iff π ⊨ (φU ψ) ∨□ φ

The satisfaction relation between a state s from the state space S and an LTL formula
φ is further defined as

s ⊨ φ iff for every infinite path π starting from s we have π ⊨ φ.

And now finally, given a state s over a Kripke structure K and an LTL formula φ,
an LTL-model-checking algorithm is a procedure that decides whether s ⊨ φ. In
the case that s ⊭ φ, the model-checking algorithm will usually helpfully provide a
counterexample in the shape of a path π = s0, s1, ... of K such that s = s0 and π ⊭ φ.

2.2.2 Term Rewriting and Maude

Maude is a specification and programming language based on equational and rewrit-
ing logic. It was originally developed by a group of researchers at SRI International,
and is currently being maintained and developed by a team of researchers from the
US and Spain.3

In the follwing section, we provide an overview over the basic functionality of the
term rewriting system, and the language features that were used in this thesis specif-
ically. The following section does not in any way shape or form attempt to explain
the entire Maude specification, which can be found in [Clavel et al., 2007].

3 https://maude.cs.illinois.edu/w/index.php/The_Maude_System:About

https://maude.cs.illinois.edu/w/index.php/The_Maude_System:About

background and related work 11

maude modules and semantics Maude differentiates between system modules,
(declared with the key words mod and endm) and functional modules, declared with the
keywords (fmod and endfm). System modules are essentially a list of declarations of

1. importation relationships to other modules,

2. sorts and subsorts (which are automatically grouped into equivalence classes
called “kinds” by the Maude system),

3. operators,

4. equations and membership statements, and

5. rewriting rules.4

Functional modules meanwhile are not allowed to include any rewriting rules,
meaning that they are essentially lists of declarations of (1)-(5). This, of course, makes
them a special case of system modules. This relationship is meaningful because
Maude supports both membership equational logic and rewriting logic, the former being
contained in the latter as a sublogic. [Bruni and Meseguer, 2003] Because we used a
system module to specify the main Maude theory for this work (elaborated upon in
Section 3.4), we will only give a brief explanation of the mathematical semantics of
Maude rewrite theories. This explanation mainly follows the one from Chapter 1.2
of [Clavel et al., 2020].
Mathematically, a Maude system module specifies a rewrite theory R:

R = (Σ, E ∪ A, φ, R),

where Σ is the signature that specifies the type structure (sorts, kinds, operators, etc.),
E is the collection of equations and memberships, and A is a collection of equational
attributes (such as associativity, commutativity...) declared for the different operators,
φ is the function specifying the frozen arguments5 of each operator in Σ, and R
is a collection of rewriting rules. From this theory, we can construct a transition
system TR. The state transitions are the concurrent rewrites possible in the system by
application of the rules R.
In the following, an example Maude system module representing a deterministic
finite automaton will be presented.

rewriting rules To make the DFA module model a DFA, we can conveniently
describe its transition relation in the form of rewriting rules.
Mathematically, a rewrite rule has the form l : t → t′, where t, t′ are terms and l

4 Coming from a nice declarative language like Haskell, one could say that sort declarations are similar
to data type declarations and operator definitions are similar to function type signatures. Rules and
equations can then be thought of as fulfilling somewhat similar roles as function bodies, however
they do it very differently and one should not rely on this comparison too heavily when trying to
understand them. And yet, this comparison is one that I would have needed to be pointed out to me
in order to understand Maude much quicker, so I feel compelled to give it.

5 This is explained in Section 4.4.9 of [Clavel et al., 2020] but omitted here because no arguments were
frozen in the creation of this thesis.

background and related work 12

1 mod DFA is

2 sort Word .

3 ops a b empty : -> Word .

4 op _,_ : Word Word -> Word [assoc] .

5

6 sort State .

7 ops s0 s1 s2 : -> State .

8

9 sort DFAState .

10 op _|_ : State Word -> DFAState .

11 op accepting : -> DFAState .

12 op rejecting : -> DFAState .

13

14 var X : Word .

15

16 rl [t1] : s0 | a,X => s1 | X .

17 rl [t2] : s0 | b,X => s2 | X .

18 rl [t3] : s1 | a,X => s1 | X .

19 rl [t4] : s1 | b,X => s2 | X .

20 rl [t5] : s2 | a,X => s2 | X .

21 rl [t6] : s2 | b,X => s2 | X .

22

23 rl [f1] : s0 | empty => rejecting .

24 rl [f2] : s1 | empty => rejecting .

25 rl [f3] : s2 | empty => accepting .

26 endm

s0

s1 s2

a b

b

a a, b

Figure 4: Declaration of a Maude module specifying the DFA pictured on the right. We
define three sorts Word, State, and DFAState, several operators on these sorts, a
variable X and the rewriting rules specifying the DFA’s transition relation (t1-t6) as
well as the DFA’s final state and corresponding acceptance behaviour (f1-f3).

is the label of the rule. Every rule describes a transition in a system, meaning that
anywhere in the system state where a substitution instance σ(t) of the left hand side
t is found, a local transition of that state fragment to the new local state σ(t′) can
take place. In Maude, this is expressed by:

rl [<label>] : <Term1> => <Term2> .

where rl is the keyword for rules, label is a label, and Term1 and Term2 are terms
of the same kind.

To see our DFA model in action, we can use the rewrite command to simulate our
DFA’s run on the word ababab word by typing: rewrite s0 | (a,b,a,b,a,b,empty).

If we look at the rules defined above, we see that rule [t1] is applicable, and that
after that application, our new DFAState will be s1 | (b,a,b,a,b,empty). Eventu-

background and related work 13

ally we would get s2 | empty, which would be rewritten to accepting by rule [f3].
If we type the above query in Maude, we will indeed see:

Maude> rewrite s0 | (a,b,a,b,a,b,empty) .

rewrite in DFA : s0 | a,b,a,b,a,b,empty .

rewrites: 6 in 0ms cpu (0ms real) (~ rewrites/second)

result DFAState: accepting

This shows us that the DFA accepts the word ababab. The DFA, of course, lives up to
its name: When reading a word, there is only ever one rule applicable at the same
time. To showcase the true power of the term rewriting system, lets now define an
NFA (Figure 5).

1 mod NFA is

2 sort Word .

3 ops a b empty : -> Word .

4 op _,_ : Word Word -> Word [assoc] .

5

6 sort State .

7 ops s0 s1 s2 : -> State .

8

9 sort NFAState .

10 op _|_ : State Word -> NFAState .

11 op accepting : -> NFAState .

12 op rejecting : -> NFAState .

13

14 var X : Word .

15

16 rl [t1] : s0 | a,X => s0 | X .

17 rl [t2] : s0 | b,X => s0 | X .

18 rl [t3] : s0 | a,X => s1 | X .

19 rl [t4] : s1 | b,X => s2 | X .

20

21 rl [f1] : s0 | empty => accepting .

22 endm

s0

s1 s2

a, b

a

b

Figure 5: Declaration of a Maude module specifying the NFA pictured on the right.

We cannot simulate the NFA just by using the rewrite command. When using
rewrite, one rule is picked to apply at a time using a specific strategy. However, to
know whether or not an NFA accepts, we need to try out all possible transitions to
learn about all possible final states a word could end up in. To do this in Maude, we
can use the search command:

Maude> search in NFA : s0 | a,a,b,empty =>! S:NFAState .

search in NFA : s0 | a,a,b,empty =>! S:NFAState .

background and related work 14

Solution 1 (state 2)

states: 5 rewrites: 4 in 0ms cpu (0ms real) (~ rewrites/second)

S:NFAState --> s1 | a,b,empty

Solution 2 (state 6)

states: 8 rewrites: 7 in 0ms cpu (0ms real) (~ rewrites/second)

S:NFAState --> s2 | empty

Solution 3 (state 7)

states: 8 rewrites: 7 in 0ms cpu (0ms real) (~ rewrites/second)

S:NFAState --> accepting

No more solutions.

states: 8 rewrites: 7 in 0ms cpu (0ms real) (~ rewrites/second)

The search command performs a breadth-first search for rewrite proofs starting at
the term given at the left hand site of the arrow, looking for a final state that matches
the term at the right side of the arrow. In the example above, we used the =>! search
type, which yields only solutions that cannot be further rewritten. (Mainly to save
space on the page.) From this result, we can see that the NFA accepts the word aab,
because there is a path that ends in an accepting state.

contribution 15

3 contribution

We created several metrics to capture certain aspects of what makes visual novel
games fun. Using the categories described by [Schaffer and Fang, 2018] as a starting
point, we narrowed our focus on just those categories that apply to visual novels and
relate specifically to the formal structure of the visual novel’s story. Understanding
each of these categories as a criteria for fun visual novels, we then tried to create spe-
cific, operationally defined metrics for each of those criteria, such that those metrics
can be reasoned about formally by analysing the source code of the game. These
metrics and their formalisation into temporal logic are described in 3.1.

Furthermore, we built the R’Ast tool to translate the Ren’Py source code into the
term rewriting language Maude, which is described in the section 3.3. Finally we
created a Maude theory MiniRenRun, that interprets the translated terms and can
be used to reason about them using an LTL temporal logic model checker, which is
described in 3.4.

These tools were then used to analyse Ren’Py code with regards to the criteria
described in 3.1. The results of this analysis can be found in Chapter 4.

3.1 Operationalised Metrics for Game Design Principles

These metrics are described with regards to how they relate to the criteria they are
intended to measure. Reasons for why they were chosen specifically were given.

We assume that the structure of the interactive story is one aspect of what makes
visual novels fun. To investigate in what way this factor contributes, we refer to
[Schaffer and Fang, 2018], where 34 different distinct categories of sources of com-
puter game enjoyment are described. 7 of them were deemed not applicable to visual
novels at all: 4 relate to interactions with other players (visual novels are almost ex-
clusively single player games), 1 speaks about moving one’s body (something that
typically requires specific hardware to incorporate into a game), 2 describe some
form of skill acquisition or progression (visual novels do not require any skills in the
sense most other video games do).

Out of the remaining 27, we chose 5 that specifically relate to the structure of an
interactive story. The following section explains these 5 criteria, how they apply to
the structure of visual novels, and the metrics we developed to measure them in the
visual novels we analysed.

It is important to note that there are many other factors that we would expect
to contribute to how fun a visual novel is. [Schaffer and Fang, 2018] for instance
also mention the categories Presence, Role-Playing and Identification with the Character
and Story, that one would expect to be very important to visual novel enjoyment.
However, this work only focuses on the formal structure of visual novels and how it

contribution 16

contributes to visual novel enjoyment, and does not claim to fully capture all facets
that make a visual novel enjoyable.

In the following section, each metric will be abbreviated with a symbol such as
A+

1 . These symbols always include a little + or − sign denoting whether the metric
has positive or negative polarity, i.e. whether this metric is thought to contribute to
the enjoyment in this category (+) or reduce it (−).

achievement and completion This category is described in [Schaffer and Fang,
2018] as: Finishing or completing a major task, and the feeling of closure and accomplishment
that finishing the task gives you. As described in 2.1.1, visual novels typically have
multiple endings. Reaching one ending could reasonably be described as completing
the visual novel. The metrics in this category describe whether or not an ending
is reachable, (which one would argue is necessary to complete it) and how many
“steps” in the story, which correspond to user inputs, are necessary to reach it, in
relation to the total amount of positions. This second measure is intended to be an
approximation of “replayability”, i.e. how many times the player might be expected
to be able to get the sense of completion from finishing it again after having finished
it once by describing what percentage of the story was already seen on the first
playthrough.

• A+
1 : Can an ending position be reached? (true/false)

• A−
2 : How long is the shortest path to an ending position? (Numerical, nor-

malised by dividing by total number of positions.)

control, choice, autonomy In a visual novel, the player enacts control over
how the story plays out by selecting specific choices, as described in 2.1.2. We cap-
ture the amount of such points where the player gets to make a choice with the
metric C+

1 . However, because not all choices actually lead to different outcomes, we
also want to measure how many different outcomes the story has. C+

2 can work
as an approximation for a lower boundary for that; It is assumed that two different
positions in the source code that both end the game will correspond to somewhat dif-
ferent outcomes of the story. However, it is not a good assumption that one ending
position can only correspond to one distinct outcome. C+

3 in turn aims to capture the
upper boundary for that, capturing how many different system states the game can
be in while it is in an ending position, assuming that different story outcomes will
always correspond with either different variable states, or a different ending position
in the story.

• C+
1 : How many different in-game menus specified in the game code are reach-

able? (Numerical)

• C+
2 : How many different positions in the game that are endings can be reached?

(Numerical)

contribution 17

• C+
3 : How many different states can the system be in at the end of a playthrough?

(Numerical)

danger, uncertain outcomes, suspense, surprise, bravery Danger in
video games is always simulated, but whereas players of other genres stand to lose
their in-game life or currency, in visual novels often the only bad outcomes are those
where the story takes a turn for the worse (the main character dies, the love interest
rejects them, the murderer gets away, ...). The metrics D+

1 and D+
2 in this category

attempt to capture the prevalence of bad endings (as described in Section 2.1.1) and
moments in the story that are meant to elicit fear, suspense or surprise. The metric
D+

3 aims to capture the uncertainty generated by scary moments in the story that
are present, but that do not have to be visited in order to complete the story.

• D+
1 : How many of the different end states (C+

3) are in a bad ending position?
(Numerical, normalised by dividing by total number of ending states.)

• D+
2 : How many reachable positions are intended to shock, frighten or surprise

the player? (Numerical)

• D+
3 : Can an ending position be reached both with and without traversing a

position that is intended to shock, frighten or surprise the player? (True, False)

making progress In order to quantify the sense of making progress a player
might get from playing a visual novel, remembering the branching nature of inter-
active stories, we made the assumption that losing progress (i.e. going back to a
position that was visited before on the same playthrough) is counterproductive to
making progress. Therefore, we developed two metrics that relate to the possibility of
going back to a position that was already passed before.

• P+
1 : How many positions are “Checkpoints”, i.e. once you’ve passed them,

you cannot go back? (Numerical, normalised by dividing by total number of
reachable statements.)

• P−
2 : How many positions can be looped infinitely? (Numerical, normalised by

dividing by total number of reachable statements.)

optimal variety & novelty [Schaffer and Fang, 2018] describe this category as:
“An amount of variety and novelty that is neither so low that it is boring nor so high that it
is overwhelming”, emphasizing that there is a range of variety that is best, while less
and more variety would both be undesirable.

However, because we analyse visual novels with regards to their story structure,
and because visual novels have some characteristics in common with works of litera-
ture that they don’t share with other video games, we assume that in this case, more
variety when it comes to the text being shown is always better. This also seems rea-
sonable because other types of video games bring variety by introducing new, more
complicated game systems to the player, something that visual novels typically lack.

contribution 18

Because of this, the metrics we chose are intended to give a sense of the amount
of repetition in a visual novel, and thus all contribute negatively to the phenomenon
of variety and novelty.

• V−
1 : How many positions can be visited more than once on a path to an ending

position? (Numerical, normalised by dividing by total number of statements.)

• V−
2 : How many positions have to be visited at least twice on a path to an

ending position? (Numerical, normalised by dividing by total number of state-
ments.)

• V−
3 : What is the maximum number of times any one line needs to be visited in

order to reach an ending position? (Numerical)

contribution 19

3.2 Formalisation of Metrics

To formalise the metrics we described in Section 3.1, we describe the state of a Ren’Py
program at any point during the execution as a 3-tuple (F, I, p) consisting of

• the mapping F : VF → B representing the current interpretation of all boolean
variables (called “flags”),

• the mapping I : VI → Z representing the current interpretation of all integer
variables,

• and the program counter p ∈ N, reflecting the current line number.

for two disjoint sets VF and VI of flags and integer variables respectively. We also
define the initial state of the system as s0 = (F0, I0, 1), where F0 sends all values
to false and I0 sends all values to 0. (We will find out in Section 3.3 why this is
consistent with our other assumptions of the Ren’Py model.)

reachability Metrics A+
1 , C+

1 , C+
2 and D+

2 all relate to the reachability of certain
positions. To show reachability of a line, we define the atomic property visting(n)
that is satisfied if and only if the system is currently visiting line n:

visiting(n) ∈ L(F, I, p) iff n = p

Then, to get reachability of each line number n, we must ask:

s0 ⊨ □¬visiting(n)

or “can line n never be visited“, and then negate that result.6

checkpoints The metric P+
1 is a stability property that can be expressed in the

LTL formula:
s0 ⊨ (¬visiting(n))W(◦□ after(n))

where the atomic property after(n) is defined as

after(n) ∈ L(F, I, p) iff p > n

This means that once n was visited for the first time, ◦□ after(n) must hold, i.e. from
the next state onwards the program counter must always be greater than n.

6 Remember that that is not the same as simply asking ¬□¬visiting(n), which would be the same as
asking ¬¬♢ visiting(n), or even ♢ visiting(n), because in LTL all formulas are implicitly universally
quantified over all paths (see Section 2.2.1).

contribution 20

infinite loops To measure P−
2 , we check for lines that cannot be looped in-

finitely by checking for each line n if

s0 ⊨ ¬□♢ visiting(n)

is true, and then negating the result. This is because the formula above expresses
unloopability, i.e. it is not the case that n will finally be visited from all positions in
the path.

can be visited more than once For the metric V−
1 , we ask for every line n:

s0 ⊨
(
¬visiting(n)

)
W

(◦□¬visiting(n)
)

and then negate the result. This is because the above formula is satisfied if and only
if line n can only be visited at most once, basically saying that n is not visited until,
in the next state, n is never visited again.

must be visited at least k times V−
2 , which describes if a line must be visited

twice, is measured by querying

s0 ⊨ ♢
(
visiting(n) ∧ ◦♢ visiting(n)

)
because it encodes that, eventually, we will be visiting n while at that same moment
looking forward to visiting n at a distinct future timestep. This can then be gener-
alised to the following formula that describes if a line must be visited at least k times
which is defined recursively as follows:

s0 ⊨ ♢
(
visiting(n) ∧ ◦♢ Fk−1

)
Where Fk−1 is the formula that describes that a line n must be visited at least k − 1
times. Querying this formula iteratively for larger k can be used to compute V−

3 .

distinct ending states Finally, to gain insight into all different ending states
the system can be in, and whether or not they are bad, we do not rely on model
checking LTL formulas. Instead we use the search command of the Maude system
to list all states in which the system is in an ending position (we will see why ending
positions correspond to return statements in Section 3.3):

search :

initial =>*
Fs:FlagState ; Is:IntState ; p(N:Nat)

such that return := line(N:Nat) .

And then we filter the result based on whether or not the ending was tagged as bad.
(See Section 4.1 for details on this tagging process.) Similarly, the shortest path to an
ending A−

2 is found by iterating that same search command with increasing search

contribution 21

depth until a solution is found. Because every search step corresponds to one Ren’Py
statement being executed, it makes sense to use search depth to measure the length
of the path through the Ren’Py program, as will become more apparent in Section
3.4. The specific Maude queries that were used to generate every one of the above
results can be found in the appendix.

contribution 22

3.3 R’Ast: A Ren’Py to Maude Translator

R’Ast is a translation software that can parse Ren’Py code into an abstract syntax tree
and generate corresponding maude terms. These maude terms can then be further
reasoned about using the maude interpreter described in 3.4. The following section
will give an overview over R’Ast’s main components and their functionalities. As
can be seen in Figure 6, R’Ast has three main components: The Preprocessor, the
Ren’Py Parser, and the Maude Generator.

Figure 6: R’Ast main components overview. Arrows show the path of the inputs and outputs
through the components. Edges with circles denote that a component holds a
reference to another component; the referenced component is the one intersected
by the circle. Imagine that the edge is an arm and the circle is a little hand holding
onto the other component.

The Preprocessor receives Ren’Py code as input and provides certain utility func-
tions to the other components. The Parser (to nobody’s surprise) parses the Ren’Py
code. A successful parse yields the Ren’Py code’s representation as an abstract syn-
tax tree (AST). The Maude Generator takes this AST as its input and generates the
corresponding maude terms. The Parser and the Maude Generator each hold a ref-
erence to the Preprocessor.

ren’py grammar and semantics The Ren’Py language has a screenplay-like
syntax that allows the visual novel developer to write each line of dialogue as a
Ren’Py statement. The lines are shown to the user one by one, like described in 2.1.2.

contribution 23

1 define breq = Character("Breq from the Gerentate", color="#121212")

2 show breq waving_hand

3 breq "I’m Breq, and this is the first line of dialogue the user would see."

4 breq "And this is the second line of dialogue the user would see."

5 hide breq

Listing 7: A simple Ren’Py example. The character Breq from the Gerentate is defined and
bound to the identifier breq, and their speaking text colour is set. A picture of this
character is then shown, a line of text displayed, and the picture is removed from
the screen.

A simple example illustrating this screenplay-like nature can be seen in Listing 7.
Because of this basic structure, each line of text corresponds to a distinct line in the
source code. In the following, these distinct lines will sometimes also be referred to
as “positions” in the story.

For practical reasons, we restricted the Ren’Py grammar to a smaller subset in this
work. In the following sections, this smaller fragment will sometimes be referred to
as MiniRen. Theoretically, the Ren’Py language supports including blocks of Python
code, and it would not be feasible to write a full Python parser/interpreter. Fur-
thermore, a lot of the Ren’Py language concerns itself with the “visual” elements of
visual novels (i.e. showing and transforming images), which were left out because
this work focuses on analysing the narrative structure of visual novels. This leaves
us with the simplified grammar for Ren’Py statements shown in Listing 8.7

<statement> = <say> | <menu> | <setFlag> | <label> | <jump> | <setInt>

<say> = <identifier> <String> | <String> <String> | <String>

<menu> = menu: (<say>)? <choice>+

<choice> = <string> <condition>?: <statement>+

<condition> = if <identifier>

<setFlag> = $ <identifier> = (true | false)

<setInt> = $ <identifier> ’=’ <intExp> | $ <identifier> ’+=’ <intExp>

<branch> = if <condition>: <statement>* (else: <statement>*)?

<label> = label <identifier>: <statement>*
<jump> = jump <identifier>

<return> = return

Listing 8: The simplified grammar for Ren’Py statements.

lines of text The say-command represents a line of dialogue being displayed.
The three alternatives shown in the production rule correspond to three different
ways this can be achieved in Ren’Py: The character saying the line can be specified

7 This is an abstract representation that doesn’t account for whitespace handling and excludes rules for
the boolean and integer expressions, string literals and identifiers, which are as the benevolent reader
familiar with statement- and expression-grammars would expect them to be.

contribution 24

by a previously defined identifier (an example of this can be seen in Listing 7), the
character can be specified by simply giving their name as a string, or the character
can be omitted entirely, usually indicating some sort of description or narration.

interactive menus Interactive dialogue choices for the player to choose from
are expressed in the form of in-game menus. A menu is comprised of an optional
say statement that is displayed alongside the menu choices (typically this can be the
question the player is supposed to select their character’s answer to), followed by
multiple menu choices.

1 label seivarden_asks_for_tea:

2 menu:

3 seiv "Do we have any tea?"

4 "Use the flask." if flask:

5 seiv "It doesn’t brew right."

6 breq "Well, suit yourself."

7 "Go and buy some, if you like.":

8 seiv "Won’t we be late?"

9 breq "No."

10 "No, I don’t think so.":

11 seiv "This is hardly civilised."

12 breq "Let’s go to the shuttle."

Listing 9: A sample Ren’Py program showing off the menu statement. In this example, the
first option “Use the flask.” is only selectable if the flag flask was set to true earlier.
If this is the case, and this choice is selected, lines 5,6,12 will be executed next.

A menu choice is comprised of its choice label, followed by an optional choice
condition, and a block of statements associated with this choice.

The player will only be able to select a choice that comes with a specified condition
if the condition evaluates to true. If the choice does not have a condition attached to
it, the player will always be able to select it.

If the player selects a choice, only the statements in the block attached to this
choice will be executed. Afterwards, execution will resume in the first line after the
menu statement, i.e. the first line after the last choice’s associated block. An example
can be seen in Listing 9.

setting variables The set_flag and set_int statements respectively are a sim-
plification of the full Ren’Py language, which supports multiple ways of setting
variables, including via in-line python code using $, python blocks, and the default-
command, which sets a variable only if there isn’t a value set for it already; a dis-
tinction that only becomes meaningful if changes to the source code between play
sessions are permitted, which the Ren’Py engine facilitates to allow developers to
update their games after release. In our model, the source code remains unchanged
between executions, so the default-command is semantically equivalent to setting
the variable in the “normal” way.

contribution 25

branches The branch-statement represents an if-command with an optional
else-clause. The following blocks respectively will only be executed if the condi-
tion is true (or false). An example can be seen in Listing 10.

1 breq "Are you pleased with the selection of fish shaped cakes, translator?"

2 if fishcakes >= 3 :

3 zeiat "Oh yes, Fleet Captain. Very much so."

4 zeiat "Might I ask for some fish sauce, as well?"

5 else:

6 zeiat "How kind of you to ask, Fleet Captain!"

7 zeiat "Indeed, if we might stop by the station soon and get some more..."

8 zeiat "That would be very much appreciated!"

9 breq "That can certainly be arranged."

Listing 10: A sample Ren’Py program showing the branch statement; depending on the
amount of fishcakes, different text is shown to the player. Lines 1 and 9 are
shown regardless.

nesting The production rules for the statements <menu>, <branch> and <label>

can generate additional <statement>s, meaning that statements can be nested to
arbitrary depth. This nested structure is controlled by indentation, this is omitted
from the grammar in Listing 8; an example illustrating nested statements can be seen
in Listing 11.

1 if bought_tea:

2 breq "Would you like some tea, translator?"

3 zeiat "Oh yes!"

4 if cups > 0:

5 breq "Five will pour you a cup. She also selected this tea set."

6 zeiat "Oh, exquisite!"

7 else:

8 breq "Unfortunately, we don’t have any cups just now."

9 breq "Would you mind taking your tea in a bowl, or perhaps a vase?"

10 zeiat "Not at all, Fleet Captain!"

11 zeiat "I’ve never had tea in a vase before!"

12 else:

13 breq "Good evening, translator."

Listing 11: A sample Ren’Py program showing two nested branching statements. The frag-
ment in lines (2-11) will only be executed if bought_tea is true, while lines 5-6
and 8-11 will only be executed if additionally cups is greater than zero, or not,
respectively.

unstructured controlflow Ren’Py supports unstructured controlflow in the
form of the jump-command, which allows jumping to a label-statement anywhere
in the program. (An example illustrating use of the jump-command can be found

contribution 26

in Listing 12.) This makes it necessary that every label be transparently accessible
from anywhere else in the code, meaning that the nested structure needs to either be
traversed correctly during or “flattened” before the execution.

1 seiv "Shall I accompany you to the station, Fleet Captain?"

2 menu:

3 "No."

4 breq "No, Lieutenant. I will leave you in command of the ship."

5 jump ship_ending

6 "Yes."

7 breq "Yes, Lieutenant. I acquire your assistance."

8 jump station_ending

Listing 12: A sample Ren’Py program showing off the jump statement; depending on the
player choice, after displaying one line of text, execution resumes either at the
label ship_ending or the label station_ending.

To achieve this, R’Ast removes the association of jump-commands to their target la-
bels in the first translation step between Ren’Py code and AST by resolving all labels
to their respective line numbers, eliminating the need to keep track of a dictionary
of labels in later steps.

return without call Additionally, full Ren’Py also includes a call statement. It
is not included in the smaller fragment language this work supports. The call state-
ment is similar to jump, in that it resumes execution at a target label. Additionally,
it pushes the location in the source code from where it was called onto a callstack,
interoperating with the return command to facilitate the creation of subroutines.

The choice to exclude the call command was made because it is not very commonly
used and fairly complicated to implement. The return command was still included.
This makes sense because at the beginning of the execution of every Ren’Py story
script, the label start is called by the engine, so that (assuming no other additions
to the callstack) the first return command marks the end of a playthrough, typically
passing control back to some sort of main menu. The Ren’Py Engine also passes
control back to the main menu if the end of the script file is reached, meaning an
explicit return statement is actually not needed.

preserving semantics without structure In order to preserve the semantics
of nested statement structures and allow for unstructured control flow at the same
time, some specific steps are necessary in translation. R’Ast first creates an AST that
preserves all the structural information of nested structures in a first step. In a sec-
ond step, the AST gets “flattened” again into a linear sequence, adding additional
control flow commands to preserve the semantics of the original nested code. These
steps are further elaborated in the following paragraphs with the help of an example.

contribution 27

Consider the Ren’Py example from Listing 9, and find a graphical representation
of its AST in figure 13. The structure of the menu statement’s AST is fully analogous to
the corresponging production rule in the grammar shown in Listing 8: A menu-node’s
child nodes include an optional node representing the aforementioned optional say
statement, as well as multiple nodes representing the menu choices. A menu choice
node then has one child node representing its label, one child node representing the
block of statements that is associated with that choice, and finally an optional child
node representing the condition that dictates whether this choice is available. The
translation from Ren’Py code into this AST structure is therefore straightforward.

Figure 13: Graphical representation of the AST of the Ren’Py code snippet in Listing 9. Only
the first menu option is displayed in full.

To create the unstructured sequence of Maude code, the AST is traversed recur-
sively. Statements only spanning a single line are directly translated into a single
line of Maude code. Statements spanning more than one line are translated into
multiple lines of Maude code. Note that the AST contains information about source
code line numbers; this information is used in this second translation step to add
jump-statements that facilitate the behaviour expressed by the nested structure. The
exact location and target of the jump-commands reflect the semantics of the different
statements. As an example, when translating the AST representing a menu-statement,
additional jump-commands not explicitly present in the original source code that
let execution resume after the menu-statement are added at the end of every choice

contribution 28

block but the very last one.

To illustrate this further, in Listing 14, the original Ren’Py code (the same as in
block 9) and the generated Maude code can be compared side by side. (The Maude
representations of the different statements will be explained further in 3.4.)

1 label seivarden_asks_for_tea:

2 menu:

m

m

m

3 seiv "Do we have any tea?"

4 "Use the flask." if flask:

5 seiv "It doesn’t brew right."

6 breq "Well, suit yourself."

7 "Go and buy some, if you like.":

8 seiv "Won’t we be late?"

9 breq "No."

10 "No, I don’t think so.":

11 seiv "This is hardly civilised."

12 breq "Let’s go to the shuttle."

eq line(1) = label .

eq line(2) = menu (

(if var(flask) cangoto 5),

(if empty cangoto 8),

(if empty cangoto 11)) .

eq line(3) = skip .

eq line(4) = skip .

eq line(5) = say .

eq line(6) = say .

eq line(7) = jump 12 .

eq line(8) = say .

eq line(9) = say .

eq line(10) = jump 12 .

eq line(11) = say .

eq line(12) = say .

Listing 14: Comparison of Ren’Py code and generated Maude terms. Every statement that is
present in the original Ren’Py code has an equivalent term that is assigned to the
original statement’s line number. Additional Maude equations, like eq line(7)

= jump 12 . are added to preserve the semantics of the menu-statement without
structurally separate blocks for each choice.

putting together the maude program Some additional assumptions are made
when the Maude program is put together for the interpreter to reason about. While
Python is of course a dynamically typed language, allowing the user to assign any
sort of data to variables with no regard for health and safety, our model restricts
all future variable assignments to the type that variable was first assigned to. The
sample we investigated (see 4.1 for details) did not contain any variable assignments
that would contradict this limitation.

Furthermore, initially, all integer variables are assigned to 0, and all boolean flags
are assigned to false. This assumption does not lead to inconsistent behaviour on
correct Ren’Py programs; were a variable ever accessed prior to initialisation, this
would lead to a runtime error.

lost in translation Because our model cares only about structural informa-
tion, we leave out a lot of information that is present in the original Ren’Py code.
This includes the contents of say statements, i.e. the actual lines being said and by
whom. Display actions like the showing and hiding of images that bear no rele-
vance to the story structure were translated into skip statements. Because of this lost

contribution 29

information, it was deemed important that the line numbers of the translated pro-
gram corresponded exactly to the line numbers of the original program to make the
process adequately transparent. To achieve this, skip statements were also included
wherever there was a line in the original Ren’Py code that did not correspond to a
Ren’Py statement (see for example lines 3, 7 and 10 in Listing 14).

contribution 30

3.4 MiniRenRun: A Maude Ren’Py Verification Tool

MiniRenRun is a Maude system module specifying a rewrite theory that simulates
an interpreter for the Ren’Py fragment presented in 3.3 and can be used to reason
about its state space. The functionality of the interpreter and the way in which the
rewrite theory can be used to verify properties of Ren’Py programs will be explained
in the following section.

the state space Like we described in 3.1, the state of a MiniRen program at any
point during the execution can be described as a 3-tuple (F, I, p). This is represented
in Maude by the sort SystemState, which is shown in Listing 15. In the following,
this Maude syntax will be used to describe the program state.

1 sort SystemState .

2 op _;_;_ : FlagState IntState ProgramCounter -> SystemState .

3

4 sort FlagState .

5 op (_=_) : Flag Bool -> FlagState .

6 op __ : FlagState FlagState -> FlagState [assoc comm] .

7

8 sort IntState .

9 op (_=_) : IntVar Int -> IntState .

10 op __ : IntState IntState -> IntState [assoc comm] .

11

12 sort ProgramCounter .

13 op p : Nat -> ProgramCounter .

Listing 15: TheSystemState encompasses the state of the flags, integer variables, the current
position of the program counter. The __-operators in lines 6 and 10 allow for
multiple assignments to simply be concatenated together.

input modules MiniRenRun does not come with a parser; the “source code” has
to be present in the form of a Maude module. A sample MiniRen input module
that can be run by the interpreter can be found in Listing 16. Such an input module
must include the MINIRENRUN module. This is because it describes specific operators
that implement sorts defined in that module. To be able to use the theory for its
intended verification purposes, this module also needs to include the MINIREN-PROP

and MODEL-CHECKER modules. MODEL-CHECKER is an extra module implemented for
core Maude. [Bae, 2014] MINIREN-PROP contains property definitions for the model
checker to reason about and will be explained in the following section. All flags and
integer variable names must be introduced as (0-ary/constant) operators of their
respective sorts. The actual “source code” must be given as a sequence of equations
using the line operator to effectively giving a mapping of every line number to the
respective line’s statement.

contribution 31

1 mod MINIREN-EXAMPLE is

2

3 protecting MINIREN .

4 including MINIREN-PROP .

5 including MODEL-CHECKER .

6

7 op initial : -> SystemState .

8 op flask : -> Flag .

9

10 eq line(1) = label .

11 eq line(2) = menu((if var(flask) cangoto 5),

12 (if empty cangoto 8),

13 (if empty cangoto 11)) .

14 eq line(3) = skip .

15 eq line(4) = skip .

16 eq line(5) = say .

17 eq line(6) = say .

18 eq line(7) = jump 12 .

19 eq line(8) = say .

20 eq line(9) = say .

21 eq line(10) = jump 12 .

22 eq line(11) = say .

23 eq line(12) = say .

24

25 eq initial = (flask = false) ;

26 () ;

27 p(1) .

28 endm

Listing 16: Representation of the Ren’Py program in Listing 9 as a Maude module. Lines
3-5 are imports that are explained further in the following section. Lines 7 and
25-27 concern the specification of the initial state of the program. The flag flask

(recall that flags are variables that appear in the Ren’Py source code and are thus
specific to this code example) is set to false initially, and no integer variables are
referenced in this example. The program counter starts at 1. Lines 10-23 define
the lines of “source code” the interpreter will run.

semantic rules As briefly explained in Section 2.2.2, Maude supports specifi-
cation through term rewriting rules. The interpreter is built from a set of such
rewriting rules, transforming one SystemState into another SystemState, according
to the semantic rules of the Ren’Py fragment specified in Section 3.3. Every rule is
made up of a left hand side, describing the current SystemState, and a right hand
side describing the SystemState after its application. Every rule is also a conditional
rule, meaning that it can only be applied if the given condition is satisfied.

The simplest of these rules is the rule concerning the say-command, given in List-
ing 18. To understand this rule, it is helpful to remember that the purpose of the
say command in Ren’Py is to display text. However, for our purposes of structural

contribution 32

1 sort Statement .

2 op say : -> Statement .

3 op return : -> Statement .

4 op label : -> Statement .

5 op jump_ : Nat -> Statement .

6 op menu_ : Choice -> Statement .

7 op set_to_ : Flag Bool -> Statement .

8 op set_to_ : IntVar IntExpr -> Statement .

9 op if_proceedelsegoto_ : Condition Nat -> Statement .

Listing 17: MiniRen fragment showing the different operators of the Statement sort. Each
operator represents a different kind of Ren’Py statement.

analysis, the content of the displayed text is not relevant and is omitted, as pointed
out in Section 3.3. The say command effectively does nothing; when this rule is
applied to a SystemState, the state of the flags Fs and Integer variables Is remains
unchanged. The program counter is incremented by one, so that the next line will
be executed.

1 crl [say] : Fs ; Is ; p(X)

2 => Fs ; Is ; p(X + 1)

3 if (say) := line(X) .

Listing 18: MiniRen interpretation rule representing the say statement.

Like all the rewriting rules making up the MiniRen interpreter, it is a conditional
rule. The say rule comes with the condition if (say) := line(X). This is a so-called
matching equation. It serves the purpose of guaranteeing the rule only gets applied if
the line at the current position of the program counter X is in fact a say-statement;
i.e. the shape of the say-statement matches the current line X.
The use of a matching equation over an ordinary equation allows for instantiation of
new variables that do not appear in the left side of the rewriting rule. The say state-
ment does not introduce any such new variables, and the condition could therefore
be rewritten to an ordinary equation. It is merely given as a matching equation to
remain consistent with other rules.

The rules implementing the set-flag statement and the set-int statements re-
spectively are shown in Listing 19. (As the rules get more complicated, it may be
helpful to read them bottom to top, beginning with the condition that describes the
statement.) On application of the set-flag rule, assuming the statement is specif-
ically of the form set F to Bnew, the flag state Fs is changed. The old tuple (F =

Bold) is replaced by (F = Bnew).
It is worth noting that our Ren’Py language fragment MiniRen only allows for flags
to be set to true or false directly, therefore there is no need to evaluate the boolean

contribution 33

expression Bnew.
The set-int rule works similarly, however, because integer variables can be set to
more complicated integer expressions, – or more accurately: can be set to the eval-
uation result of an integer expression (given the current variable bindings) – it is
necessary to evaluate the integer expression Inew before writing it into the state.

1 crl [set-flag] : (F = Bold) Fs ; Is ; p(X)

2 => (F = Bnew) Fs ; Is ; p(X + 1)

3 if (set F to Bnew) := line(X) .

4

5

6 crl [set-int] : Fs ; (IVar = Iold) Is ; p(X)

7 => Fs ; (IVar = inteval(Iexpr, (IVar = Iold) Is)) Is ; p(X + 1)

8 if (set IVar to Iexpr) := line(X) .

Listing 19: MiniRen interpretation rules representing the set-flag and set-int statements.

The rule implementing the jump statement fairly unsurprisingly sets the program
counter to the jump target. Because the jump operator’s argument is a line number
and not a label, the label statement is vestigial at this point in the translation pro-
cess. The rule is identical to the say rule. The choice to keep labels as a distinct
type of statement was made to make the translated code more readable and the
correspondence to the original Ren’Py code more obvious.

1 crl [jump] : Fs ; Is ; p(X)

2 => Fs ; Is ; p(Y)

3 if (jump Y) := line(X) .

4

5 crl [label] : Fs ; Is ; p(X)

6 => Fs ; Is ; p(X + 1)

7 if (label) := line (X).

Listing 20: MiniRen interpretation rules representing the jump and label statements.

The rules implementing the branch statement are shown in Listing 21. For addi-
tional clarity, another example comparing the original Ren’Py code and the Maude
code is provided in Listing 22.
Assuming both branches of the if-then-else-statement are present: If the condition
supplied in the first argument of the if_proceedelsegoto_ operator evaluates to true,
the [if] rewriting rule can be applied, (lines 1-4 of Listing 21). This means that the
program counter is simply incremented by one (“proceed”). If it is false, the [else]

rule can be applied (lines 6-9 of Listing 21). In that case, the program counter is set to
Y, which is the second argument of the if_proceedelsegoto_ operator. There is also
an additional jump command created in the line where the head of the else-branch
sits in the original Ren’Py code (we see this in Listing 22 in line 5.) The target of this
jump is always the next line after the branch statement concludes.

contribution 34

1 crl [if] : Fs ; Is ; p(X)

2 => Fs ; Is ; p(X + 1)

3 if (if P proceedelsegoto Y) := line(X)

4 /\ booleval(P,Fs,Is) .

5

6 crl [else] : Fs ; Is ; p(X)

7 => Fs ; Is ; p(Y)

8 if (if P proceedelsegoto Y) := line(X)

9 /\ not booleval(P,Fs,Is) .

Listing 21: MiniRen interpretation rules representing the branch statement.

1 breq "Are you pleased with the cakes?"

2 if fishcakes >= 3 :

m

3 zeiat "Oh yes, Fleet Captain."

4 zeiat "Can I have fish sauce?"

5 else:

6 zeiat "How kind of you to ask!"

7 zeiat "Could we perhaps get more?"

8 breq "That can certainly be arranged."

eq line(1) = say .

eq line(2) = if var(fishcakes) \>=

const(3) proceedelsegoto 6 .

eq line(3) = say .

eq line(4) = say .

eq line(5) = jump 8 .

eq line(6) = say .

eq line(7) = say .

eq line(8) = say .

Listing 22: Another comparison of Ren’Py code (similar to the snippet in Listing 10)
and corresponding generated Maude terms, illustrating the semantics of the
if_proceedelsegoto_ operator.

Assuming only the if-branch is present (which is also valid, recall the grammar in
Listing 8 in Section 3.3), the second argument of if_proceedelsegoto_ is the number
of the first line after the if-block concludes, no additional jump is created in this case.
Note that so far, it was never possible for more than one rule (or more than one ver-
sion of a rule with different variable interpretations) to be applied at the same time.

This will change now. Recall first that the argument of the Menu operator was
specified above to be of sort Choice. Review the Choice sort declarations and as-
sociated operator declarations in Listing 23 to find that terms of sort Choice can
be of the form if_cangoto_, and specify a condition, and a line number, represent-
ing a single choice option. They can also be associative, commutative terms of shape
C1,C2,C3..., (constructed similarly to how words were constructed in the DFA/NFA
examples in Section 2.2.2) where C1, C2, C3 are Choices themselves, representing an
unordered list of choice options.

1 sort Choice .

2 op if_cangoto_ : Condition Nat -> Choice .

3 op _,_ : Choice Choice -> Choice [assoc comm] .

Listing 23: MiniRen Choice sort declarations and associated operators.

contribution 35

Consider now the rule for the menu statement presented in Listing 24.

1 crl [menu] : Fs ; Is ; p(X)

2 => Fs ; Is ; p(Y)

3 if (menu ((if P cangoto Y) , Cs)) := line (X)

4 /\ booleval(P,Fs,Is) .

Listing 24: MiniRen interpretation rule representing interactive game menus.

We can see that for the menu rule to be applied, there must be a choice given in the
argument of the menu_ operator, which contains a condition P which evaluates to
true. (Ren’Py choices that do not come with a specified condition are represented on
the Maude side with the empty condition, which always evaluates to true.) Of course,
there can be multiple choices with conditions that evaluate to true at the same time,
meaning that there can be multiple versions of the menu rewrite rule applicable at
the same time.

model checking miniren programs To use the Maude model checker module
[Bae, 2014], it is advised to create a dedicated Maude module that defines proper-
ties and whether or not they apply to a given system state (corresponding to the
labelling function L in our Kripke structure). We show the full property module
in 25. Therein, we declare our sort SystemState as a subsort of the predifined sort
State that comes with the model checker module, and use the also predefined sort
|= to define the three operators visiting, after, and ending, the first and second
being familiar from Section 3.2.

To now query the model checker, one needs to load all relevant Maude modules
in an order consistent with the various inclusion relationships. Then one must use
the reduce command on a term created with the operator modelCheck specified in
the model checking module. For instance, to query whether it is impossible to reach
a state that is labeled with the ending property, one would write:

red modelCheck(initial, [] ~ ending) .

The result of such a model checking reduction query will then either be of sort Bool
(and have the value true) or it will be of sort counterexample, and give a path that
does not satisfy the queried formula.

contribution 36

1 mod MINIREN-PROP is

2

3 protecting MINIREN .

4 protecting NAT .

5 including MODEL-CHECKER .

6

7 subsort SystemState < State .

8

9 ops visiting after : Nat -> Prop .

10 op flagged : Flag -> Prop .

11 op ending : -> Prop .

12

13 var N : Nat .

14 var X : Nat .

15 var F : Flag .

16 var PC : ProgramCounter .

17 var Fs : FlagState .

18 var Is : IntState .

19

20 eq ((Fs ; Is ; p(N)) |= visiting(N)) = true .

21

22 ceq ((Fs ; Is ; p(X)) |= after(N)) = true

23 if X > N .

24

25 ceq ((Fs ; Is ; p(N)) |= ending) = true

26 if line(N) == return .

27 endm

Listing 25: Maude module containing operators declaring properties and equations that
specify what states they apply to.

evaluation 37

4 evaluation

In the following chapter, the experiment we performed to evaluate the metrics that
were developed in 3.1 will be described. The results of this experiment will be shown
in detail. The result will be interpreted, and the limitations of these interpretations
will be laid out. Finally, further applications of the metrics and tools developed will
be briefly described with a focus on visual novel developers employing these tools
and metrics in their development process.

4.1 Experimental Setup

We analysed open source visual novels and compared their performance according
to our metrics developed in Section 3.1.
In the following section, the sample and experimental process will be described
in Section 4.1. The results of the formally analysed metrics will be presented in
Section 4.2. The results and their limitations will be discussed in Sections 4.3 and
4.3.1. Finally, further applications of the tools developed will be briefly described in
Section ??.

sample selection For our study, we selected 6 open source visual novels from
the platform itch.io. The novels were selected based on different criteria. All novels
needed to be open source, and we required that they were released within the last 3

years. We attempted to have the sample represent a variety of genres.
We also needed to restrict our selection somewhat to not use any Ren’Py language
features that are not included in the Ren’Py fragment we restricted our tool’s analysis
scope to. Table 1 shows an ovewview of this sample.

title year language # of ratings avg rating

A Valentine’s Tryst [1] 2024 english 1 5

Love Bytes [2] 2023 english 0 N/A

My Own Worst Nightmare [3] 2024 german 0 N/A

We Are Passengers [4] 2021 english 20 5

Shrimply Yours [5] 2024 english 0 N/A

Kill The Rabbit [6] 2024 english 2 5

Table 1: Overview of the sample. Number of ratings and average rating were taken from the
respective itch.io pages on the access date specified in the bibliography.

From Table 2 that has a list of the creator given tags for each of the novels in the
sample, we can assume that our sample spans a variety of genres, with two novels
being tagged as “Horror”. It is somewhat interesting to see the longest novel in our
sample still being tagged as “short”, giving us an indication that our sample might
include particularly short novels.

itch.io
itch.io

evaluation 38

ref. tags

[1] Cute, Feel Good, Furry, Gay, LGBT, Male protagonist, Multiple Endings,
Narrative, Romance, Short

[2] 2D, Dating Sim, Funny, Multiple Endings, Open Source, pansexual, Short,
Singleplayer, Surreal

[3] Creepy, Horror, Psychological Horror

[4] Lo-fi, Surreal

[5] 2D, Global Game Jam, Ren’Py, shrimp, Singleplayer

[6] 2D, Dark, Horror, Mystery, Sprites

Table 2: Tags given to the sample visual novels from their creators.

experimental process This sample was analysed with the tools described in
Sections 3.3 and 3.4 to measure the variables described in 3.1.
For this work, the bad endings and frightening, shocking or surprising moments
were tagged by hand, with an emphasis on trying to match developer intent as close
as possible. For example, if 2 out of 5 endings were preceded by the text “GAME
OVER”, whereas the other three were preceded by the text “THE END” being shown,
then exactly those first two were tagged as bad endings.
To analyse each sample novel, we created a Maude file with all the queries pertaining
to that novel. From the responses to these Maude queries, the final results for each
metric were computed with a Scala script.

4.2 Experiment Results

code statistics For the first part of the analysis, we analysed the input code
and the parsed AST to learn about the prevalence of certain types of statements in
the code, as well as the number of different flags and variables that are specified. In
Table 3, the findings of this analysis can be seen.

ref. # r-lines # r-statements # flags # int vars # say # menu # return

[1] 1103 967 2 3 552 11 6

[2] 247 172 0 1 81 6 0

[3] 279 224 0 0 102 6 6

[4] 152 85 0 0 48 2 1

[5] 236 224 0 1 124 6 3

[6] 759 426 0 1 179 7 4

Table 3: Code statistics of the visual novels.

The columns ‘# lines’ and ‘# statements’ describe the number of lines and statements
in the Ren’Py source code respectively. Note that these two are not typically equal,

evaluation 39

as the source code will often include comments and empty lines. Additionally, some
Ren’Py statements take up multiple lines.
The columns ‘# flags’ and ‘# int vars’ describe the amount of different flags and inte-
ger variables used in the source code.
Finally, the columns ‘# say’, ‘# menu’ and ‘# return’ show how many say-, menu-, and
return-statements are found in the source code respectively. Note that the number
of return-statements is used to calculate ending positions in the following section,
this is because of how the Ren’Py engine embeds the interactive story into its appli-
cation structure, as further described in Section 3.3.

It should be noted that two sample novels, [3] and [4] do not use any flags or
variables. This could hint at those two novels having a more linear story structure
(see Section 2.1.1). However, that is not necessarily the case, as in-game menus can
still be used to create a non-linear story structure without using any variable state.

reachability analysis For every visual novel, we checked every statement for
reachability and “obligatoriness”, i.e. whether or not a line must be visited on every
run. The result of this analysis is displayed in Table 4. It is pleasant to note that most
statements are reachable, as unreachable code is usually a sign of programming over-
sights. None of the sample novels were found to have more than 5% unreachable
statements. The amount of statements that is obligatory to reach an ending could be
another hint as to certain novels being more linear.

ref. # statements #reachable % reachable #obligatory % obligatory

[1] 967 966 99.9 119 12.3

[2] 172 164 95.3 35 20.35

[3] 224 222 99.1 23 10.3

[4] 85 85 100 67 78.8

[5] 224 224 100 29 12.9

[6] 426 426 100 30 7.04

Table 4: Reachability analysis of the of the sample. We give absolute and relative numbers
for reachability and obligatoriness.

metrics for fun In Tables 5 , 6 and 7 the main results of the analysis of the met-
rics for video game fun we constructed in Section 3.1 are displayed. Each column
corresponds to one of these formalised metrics. In certain instances, the prenor-
malised absolute values as well as the previously computed reference numbers the
values are normalised against are given, as well. Prenormalised values are denoted
with an *.

evaluation 40

ref. # lines A+
1 A−

2 * A−
2

[1] 1103 true 253 0.22

[2] 247 true 71 0.29

[3] 279 true 35 0.13

[4] 152 true 119 0.78

[5] 236 true 56 0.24

[6] 759 true 106 0.14

Table 5: Analysis of the sample with regards to metrics that relate to the category Achieve-
ment and Completion.

Beginning with table 5, we can see that every visual novel can reach an ending state.
We also note that higher values in A−

2 *, the absolute length of the shortest path, seem
to be associated with higher obligatory line counts (see Table 4.) The scatterplot in
Figure 26 shows this relationship. We can see that the number of obligatory lines
seems to be fairly close to half the length of the shortest path to an ending for our
sample.

20 40 60 80 100 120

50

100

150

200

250

obligatory lines

A
− 2

*

Figure 26: Scatterplot showing the relationship between A−
2 * and the number of obligatory

lines.

Looking at table 6, we observe that C+
1 is equal to the number of menu statements for

all rows, meaning all menu statements are reachable. C+
2 is equal to the number of

return-statements in all but one case; in the case of [1] there is one return statement
that can’t be reached.
The result for C+

3 for [3] is consistent with the static analysis; because there are no
flags or variables, the only way that ending states can possibly differ from each other
is with regards to the program counter, i.e. the return statement in which the pro-
gram ends, meaning that for this novel, C+

3 – the metric that determines the different

evaluation 41

states the system can endin – must be equal to the number of return statements.

ref. # menu # return C+
1 C+

2 C+
3 D+

1 * D+
1 D+

2 D+
3

[1] 11 6 11 5 61 4 0.07 0 false

[2] 6 0 6 0 10 0 0.00 0 false

[3] 6 6 6 6 6 5 0.83 5 false

[4] 2 1 2 1 1 0 0.00 0 false

[5] 6 3 6 3 7 4 0.57 1 true

[6] 7 4 7 4 8 4 0.50 6 false

Table 6: Analysis of the sample with regards to metrics that relate to the category Choice and
Autonomy and Danger, Uncertainty.

For D+
1 , we see that two novels ([2] and [4]) do not have any bad endings. Interest-

ingly, the novel [1] has 5 reachable return statements, out of which 2 (or 40%) are
tagged as “bad” endings. Compared to this, only 0.07 % of distinct reachable ending
states land in one of those bad ending positions, leading us to suppose that most of
the lines in the visual novel are on paths to one of the three “good” endings.

Three of the sampled novels have positions that are tagged as frightening, shock-
ing or surprising. In two of those ([6] and [3]), an ending cannot be reached without
visiting one of those positions, meaning only [5] fulfills the metric D+

3 , where there
is both at least one path to an ending that traverses a “scary” position, and one that
is not.

ref. # reachable P+
1 * P+

1 P−
2 V−

1 * V−
1 V−

2 V−
3

[1] 966 966 1.00 0 0 0.00 0.00 1

[2] 164 164 1.00 0 0 0.00 0.00 1

[3] 222 216 0.97 0 0 0.00 0.00 1

[4] 85 84 0.99 0 0 0.00 0.00 1

[5] 224 213 0.95 0 7 0.03 0.00 1

[6] 426 275 0.65 0 146 0.34 0.00 1

Table 7: Analysis of the sample with regards to metrics that relate to the categories Making
Progress and Optimal Variety & Novelty.

In Table 7, it is most apparent that two of our metrics, P−
2 and V−

2 , yielded 0 as a
result for all our sampled novels. This means that none of the novels we investigated
contain any infinitely loopable lines (P−

2), and none of the novels contain any lines
that must be visited at least twice to reach an ending (V−

2). V−
2 being 0 of course

means that V−
3 is always 1 (for each novel contains lines that must be visited once to

reach an ending, as we can gather from Table 4).

evaluation 42

4.3 Discussion

In the following section, we will discuss the results from Section 4.2 with regard to
whether or not each of the metrics that were developed in Section 3.1 can be said to
accurately measure the degree to which the story structure of a visual novel game
contributes to game enjoyment in their respective category.

4.3.1 Interpretation of the Results

linearity in novel [4] Out of the two novels that stood out initially for not
using any flags or variables (novels [4] and [3]), novel [4] also has the highest per-
centage of obligatory statements, substantiating our supposition that it might have a
more linear structure than other novels in the sample. Novel [3] on the other hand
achieves a similarly low percentage of obligatory lines compared to the other novels
in the sample while not using any flags or variables.
Because a linear story leaves less room for player choice and autonomy, this supposi-
tion that novel [4] might have a more linear story structure would lead us to assume
that novel [4] would also have low values in the metrics measuring choice and au-
tonomy, C+

1 , C+
2 and C+

3 . Looking at table 6, we can see that this is the case: Novel
[4] has lower values than all other novels for C+

1 and C+
3 , and the second lowest value

for C+
2 .

This means that, assuming that our initial intuition that the numbers of variables
and percentage of lines that are obligatory speak to a more linear structure of the
story, a correspondence between those values and the metrics we chose to measure
player choice and autonomy could have favourable implications for the validity of
these metrics. A second study with a larger sample size could investigate if these
values are indeed correlated.

obligatory lines and shortest paths From the apparent connection between
the value A−

2 (Table 5) and the percentage of obligatory lines (Table 4) that is shown
in Figure 26, we could make the supposition that the length of the shortest path
to the ending might be correlated to the amount of obligatory lines. It would be
interesting to specifically see how many lines on the shortest path to the ending are
obligatory, and vice versa.

observations on repetition As we saw in Table 7, our sample showed only
values of 0 for the metrics P−

2 and V−
1 , meaning that there were neither infinitely re-

peatable lines nor lines that needed to be visited more than once to reach an ending
position. (The latter also leading to V−

2 , the maximum amount any one line needs
to be repeated to reach an ending, 1 for the entire sample.) This means that unfortu-
nately, we are not able to see any differences between the novels in our sample with
regards to the variables P−

2 V−
1 , and V−

2 . This seems to be a peculiarity of the sam-
ple as infinitely loopable positions are not known to be uncommon in visual novels
altogether.

evaluation 43

genre observations Novels [6] and [3] were both tagged as “horror” by their
creators on their respective itch.io-pages. This would lead us to assume that they
should have rather high values in metrics D+

1 and D+
2 , which speak to prevalence

of bad endings and scary moments in the game. However, considering that bad
moments were tagged by hand, it is entirely possible that genre indicators in title,
art, and novel script8 lead to horror novels having disproportionately many moments
tagged as scary or bad simply because the tagging person expected them to be there.

conclusion and limitations We were able to measure differences within our
sample with regards to 11 out of 13 of our constructed metrics. We found a rela-
tionship between A−

2
* (the length of the shortest path to an ending) and the amount

of obligatory lines. If investigated further, this relationship might give interesting
insight in the structure of novels with regards to the categorisation of interactive sto-
ries by [Lebowitz and Klug, 2011a] that was described in Section 2.1.1. Specifically,
it would be interesting to investigate how many of the lines on the shortest path to
the ending are also obligatory (meaning: part of all other paths as well).

The metrics in the category choice and autonomy (the amount of reachable ending
positions C+

1 , the amount of reachable in-game menus C+
2 , and the number of dis-

tinct ending states C+
3) also seem to connect to the linearity of a story. Specifically,

C+
2 and C+

3 can determine if a story has multiple endings, and give us a hint about
how many different paths lead to these endings. It would be interesting to create
similar metrics to C+

3 measuring the amount of different states that can be reached
corresponding to each individual ending statement. It would also be interesting to
further analyse the different ending states and see if they can perhaps be meaning-
fully categorised, revealing relationships between variable states and ending position.
We believe that the metrics in the categories of making progress and variety and novelty
were by and large not able to differentiate the sample meaningfully. This might be
because the novels in the sample did not contain any infinitely loopable lines what-
soever (P−

2 always being zero). We do not believe the sample to be representative of
the totality of visual novels in this regard.

When evaluating the quality of empirical metrics, we refer to three different crite-
ria: Objectivity, reliability, and validity. Our metrics are (with the exception of the
ones that rely on tagging of specific visual novel lines as bad etc.) highly objective,
because they are measured through mathematical models. For the same reason, they
are also reliable in the sense that repeated measurements will always yield the same
results. However, the validity of our metrics is largely unclear for the folliwing rea-
sons.
Ideally, we would like to benchmark our metrics on other empirical data measur-
ing visual novel story structure enjoyment. Unfortunately however, there is no such
data available. Another possible avenue to compare with other metrics of visual
novel enjoyment would be to benchmark against itch.io ratings, however, because

8 Person who tagged the endings and scary positions solemnly swears she did not look at the itch.io

tags beforehand.

itch.io
itch.io
itch.io

evaluation 44

our sample size was so small, and specifically three out of our six sample novels do
not have any ratings at all, this was also not really feasible.
The small sample size also leaves little room for statistical analysis of the result mea-
suring scale reliability. This means we cannot make any claims that speak to the
validity of our metrics besides that we have constructed them from a comprehensive,
empirically based model.

We hope that by describing objective mathematical metrics that can distinguish
visual novels based on different attributes of their story structure, with regards to
specific empirically grounded categories of video game enjoyment, we have created
a meaningful stepping stone for further research into the deeply relevant question
of What Makes Video Games Fun.

4.3.2 Applications

Assuming that story structure meaningfully contributes to the enjoyment of visual
novel games, visual novel writers and developers put a lot of work in designing this
structure. Visual novels are commonly used as serious games and e-learning tools,
which are developed by research teams or other interest groups that are not pro-
fessional game designers, empirical measures that speak to the linearity of a story
could be useful for them.

Furthermore, developers might have certain structural properties in mind when
designing a story. Because visual novel programs are programs they can, like all
programs, be difficult to reason about by the programmer without additional tools
once they reach a certain length and complexity.
The tools described in Sections 3.3 and 3.4 can be used by visual novel developers
to specify certain structural properties of their visual novels, and to verifying them.
For example, in a detective story, one might want to make sure that a certain piece
of evidence must be collected before the player character can accuse a suspect of the
crime. This can be done by defining another property flagged:

flagged(f) ∈ L(F, I, p) iff F(f) is true.

Assuming that the accusation of the suspect happens in line n, and the flag for
the piece of evidence being collected is evidence1, one would then query the model
checker with

s0 ⊨ □
(
visiting(n) ⇒ flagged(evidence1)

)
to find whether the visual novel behaves accordingly.
If the developer is not ready to trust that the flag is always set correctly, but instead
knows a specific line m in the story that corresponds with this piece of evidence
being found, they could query:

s0 ⊨
(
¬visiting(n)

)
W visiting(m)

conclusion and future work 45

5 conclusion and future work

We created operationalised metrics to measure the impact of visual novel story struc-
ture on video game enjoyment with regards to specific categories described by [Schaf-
fer and Fang, 2018] by analysing a Ren’Py visual novel’s source code. We formalised
these metrics into temporal logic and queries to the term rewriting system Maude.
To investigate the Ren’Py source code with regards to these formalised metrics, we
also created a tool to translate Ren’Py code into Maude, and a Maude program speci-
fying a rewriting theory that simulates a Ren’Py interpreter within Maude. We were
able to measure differences with regards to most of these metrics within our sample.
The differences we saw in the categories choice and autonomy and achievement and com-
pletion could yield insight into a visual novel’s story’s linearity.
However, because we only investigated a very small sample size, we were not able to
investigate the validity of the developed metrics. As a future study, it would be inter-
esting to have players evaluate visual novel games with regards to their enjoyment
in the relevant categories, and see how their judgements compare to the developed
metrics. It would also be worthwhile to investigate internal consistency reliability of
the developed metrics on a larger sample.

appendix 46

a appendix

Scala code that was used to generate the Maude queries, as explained by section 3.2.
Note that rs is a collection of all line numbers that are associated with a statement
in the Ren’Py code.

1 val unreachability = rs

2 .map(i => s"red modelCheck(initial, [] ~ visiting($i)) .")

3

4 val obligatoriness = rs

5 .map(i => s"red modelCheck(initial, <> visiting($i)) .")

6

7 val checkpointiness = rs

8 .map(i => s"red modelCheck(initial, (~ visiting($i)) W O [] after($i)) .")

9

10 val unloopability = rs

11 .map(i => s"red modelCheck(initial, ~ [] <> (visiting($i))) . ")

12

13 val unique = rs

14 .map(i => s"red modelCheck(initial, ~ visiting($i) W O [] ~ visiting($i))

.")

15

16 val visitedatleasttwice = rs

17 .map(i => s"red modelCheck(initial, (<> (visiting($i) /\\ O <>

visiting($i)))

18

19 val endingUnreachable = List("red modelCheck(initial, [] ~ ending) .")

20 val endingObligatory = List("red modelCheck(initial, <> ending) .")

21 val endingWithoutScary = List(s"red modelCheck(initial, ~ scary($novel) U

ending) .")

references 47

references

Aviation6 (2023). Love bytes. https://aviation6.itch.io/love-bitshd. Accessed
29.03.2024.

Baader, F. and Nipkow, T. (1998). Term rewriting and all that. Cambridge University
Press.

Bae, K. (2014). The Maude LTL Logical Model Checker. https://maude.cs.illinois.
edu/tools/lmc/. Accessed 27.03.2024.

Bae, K., Escobar, S., and Meseguer, J. (2013). Abstract Logical Model Checking of
Infinite-State Systems Using Narrowing. In van Raamsdonk, F., editor, 24th Inter-
national Conference on Rewriting Techniques and Applications (RTA 2013), volume 21

of Leibniz International Proceedings in Informatics (LIPIcs), pages 81–96, Dagstuhl,
Germany. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

Bae, K., Escobar, S., and Meseguer, J. (2014). The maude ltl lbmc tool tutorial. https:
//maude.cs.illinois.edu/tools/lmc/manual.pdf. Accessed 27.03.2024.

Bartle, R. (1996). Hearts, clubs, diamonds, spades: Players who suit muds. Journal of
MUD research, 1(1):19.

Black Tabby Games (2023). Slay the princess. https://www.gog.com/en/game/slay_

the_princess. Accessed 29.03.2024.

Bril, I. and Degens, N. (2016). Applying formal design methods to serious game
design: a case study.

Bruni, R. and Meseguer, J. (2003). Generalized rewrite theories. In International
Colloquium on Automata, Languages, and Programming, pages 252–266. Springer.

casket (2021). We are passengers. https://catsket.itch.io/we-are-passengers.
Accessed 29.03.2024.

Cavallaro, D. (2009). Anime and the visual novel: narrative structure, design and play at
the crossroads of animation and computer games. McFarland.

Celina R. and Kaya E. (2024). My own worst nightmare. https://

your-worst-nightmares.itch.io/my-own-worst-nightmare. Accessed 29.03.2024.

Christoph, K. and Tilo, H. (2012). Effectance, self-efficacy, and the motivation to play
video games. In Playing video games, pages 153–168. Routledge.

Clarke, E. M., Henzinger, T. A., Veith, H., Bloem, R., et al. (2018). Handbook of model
checking, volume 10. Springer.

Clarkson, M. R. and Schneider, F. B. (2010). Hyperproperties. Journal of Computer
Security, 18(6):1157–1210.

https://aviation6.itch.io/love-bitshd
https://maude.cs.illinois.edu/tools/lmc/
https://maude.cs.illinois.edu/tools/lmc/
https://maude.cs.illinois.edu/tools/lmc/manual.pdf
https://maude.cs.illinois.edu/tools/lmc/manual.pdf
https://www.gog.com/en/game/slay_the_princess
https://www.gog.com/en/game/slay_the_princess
https://catsket.itch.io/we-are-passengers
https://your-worst-nightmares.itch.io/my-own-worst-nightmare
https://your-worst-nightmares.itch.io/my-own-worst-nightmare

references 48

Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Martı-Oliet, N., Meseguer, J.,
Rubio, R., and Talcott, C. (2020). Maude manual (version 3.1). SRI International
University of Illinois at Urbana-Champaign.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., and Talcott,
C. (2007). All About Maude - A High-Performance Logical Framework: How to Specify,
Program, and Verify Systems in Rewriting Logic. Lecture Notes in Computer Science.
Springer Berlin Heidelberg.

CODI/CLAUDIO (2024). Kill the rabbit. https://collisiondiscourse.itch.io/

kill-the-rabbit. Accessed 29.03.2024.

DizzyKa (2017). Profiling your renpygame code for performance. https://

lemmasoft.renai.us/forums/viewtopic.php?t=42107. Accessed 29.03.2024.

Documentation, R. (2023). Interactive director. https://www.renpy.org/doc/html/

director.html. Accessed 27.03.2024.

Etchells, P. (2019). Lost in a good game: Why we play video games and what they can do
for us. Icon Books.

Geoffrey Bunting (2023). Why are visual novels suddenly so popular? https:

//www.eurogamer.net/why-are-visual-novels-suddenly-so-popular. Accessed
29.03.2024.

Hamari, J. and Keronen, L. (2017). Why do people play games? a meta-analysis.
International Journal of Information Management, 37(3):125–141.

Hamari, J. and Tuunanen, J. (2014). Player types: A meta-synthesis. Transactions of
the Digital Games Research Association.

Lebowitz, J. and Klug, C. (2011a). Interactive storytelling for video games: A player-
centered approach to creating memorable characters and stories. Taylor & Francis.

Lebowitz, J. and Klug, C. (2011b). Japanese visual novel games. Interactive storytelling
for video games: a player-centered approach to creating memorable characters and storie.,
pages 192–4.

Lil’ Beastman (2024). A valentine’s tryst. https://lil-beastman.itch.io/

a-valentines-tryst. Accessed 29.03.2024.

Lochman, M. (2020). Program planning through a visual novel-
style game. https://scholarspace.manoa.hawaii.edu/bitstreams/

344da066-4aed-4bed-9832-dfd0a6576e7a/download. Accessed 27.03.2024.

Meseguer, J. (1992). Conditional rewriting logic as a unified model of concurrency.
Theoretical computer science, 96(1):73–155.

Øygardslia, K., Weitze, C. L., and Shin, J. (2020). The educational potential of visual
novel games: Principles for design. Ritsumeikan Center for Game Studies (RCGS),
Ritsumeikan University.

https://collisiondiscourse.itch.io/kill-the-rabbit
https://collisiondiscourse.itch.io/kill-the-rabbit
https://lemmasoft.renai.us/forums/viewtopic.php?t=42107
https://lemmasoft.renai.us/forums/viewtopic.php?t=42107
https://www.renpy.org/doc/html/director.html
https://www.renpy.org/doc/html/director.html
https://www.eurogamer.net/why-are-visual-novels-suddenly-so-popular
https://www.eurogamer.net/why-are-visual-novels-suddenly-so-popular
https://lil-beastman.itch.io/a-valentines-tryst
https://lil-beastman.itch.io/a-valentines-tryst
https://scholarspace.manoa.hawaii.edu/bitstreams/344da066-4aed-4bed-9832-dfd0a6576e7a/download
https://scholarspace.manoa.hawaii.edu/bitstreams/344da066-4aed-4bed-9832-dfd0a6576e7a/download

references 49

Pachipower and rainb0wv0mit (2024). Shrimply yours. https://pachipower.itch.

io/shrimply-yours. Accessed 29.03.2024.

Plagge, K. (2014). Pokémon Alpha Sapphire and Omega
Ruby Review. https://www.ign.com/articles/2014/11/18/

pokemon-alpha-sapphire-and-omega-ruby-review. Accessed 29.03.2024.

Pnueli, A. (1977). The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pages 46–57.

Pratama, D., Wardani, W. G. W., and Akbar, T. (2018). The visual elements strength
in visual novel game development as the main appeal. Mudra Jurnal Seni Budaya,
33(3):326–333.

Quimerc’h, E. (2022). Ren’py graph visualizer - branches flowchart generator. https:
//github.com/EwenQuim/renpy-graphviz. Accessed 29.03.2024.

Ren’Py (2023). The Ren’Py visual novel engine. https://www.renpy.org/. Accessed
27.03.2024.

Rouse III, R. (2004). Game Design: Theory and Practice: Theory and Practice. Jones &
Bartlett Learning.

Rozier, K. Y. (2011). Linear temporal logic symbolic model checking. Computer Science
Review, 5(2):163–203.

Schaffer, O. and Fang, X. (2018). What makes games fun? card sort reveals 34 sources
of computer game enjoyment. Americas Conference on Information Systems (AMCIS)
201.

Sharp, N. (2018). Top 10 most controversial video game reviews. https://www.

watchmojo.com/articles/top-10-most-controversial-video-game-reviews.
Accessed 29.03.2024.

Slawik, I. (2017). Generalisierbarkeit von Gamification-Ansätzen in E-Learning – eine
explorative Studie. Gesellschaft für Informatik, Bonn, pages 273–284.

Team Salvato (2017). Doki doki literature club. https://ddlc.moe/. Accessed
29.03.2024.

The Maude Team (2023). The Maude System. https://maude.cs.illinois.edu/w/

index.php/The_Maude_System. Accessed 29.03.2024.

https://pachipower.itch.io/shrimply-yours
https://pachipower.itch.io/shrimply-yours
https://www.ign.com/articles/2014/11/18/pokemon-alpha-sapphire-and-omega-ruby-review
https://www.ign.com/articles/2014/11/18/pokemon-alpha-sapphire-and-omega-ruby-review
https://github.com/EwenQuim/renpy-graphviz
https://github.com/EwenQuim/renpy-graphviz
https://www.renpy.org/
https://www.watchmojo.com/articles/top-10-most-controversial-video-game-reviews
https://www.watchmojo.com/articles/top-10-most-controversial-video-game-reviews
https://ddlc.moe/
https://maude.cs.illinois.edu/w/index.php/The_Maude_System
https://maude.cs.illinois.edu/w/index.php/The_Maude_System

	1 Introduction
	2 Background and Related Work
	2.1 Video Games and What Makes them Fun
	2.1.1 Visual Novels
	2.1.2 The Ren'Py Engine
	2.1.3 What makes games fun?

	2.2 Theoretical Background
	2.2.1 Temporal Logic Model Checking
	2.2.2 Term Rewriting and Maude

	3 Contribution
	3.1 Operationalised Metrics for Game Design Principles
	3.2 Formalisation of Metrics
	3.3 R'Ast: A Ren'Py to Maude Translator
	3.4 MiniRenRun: A Maude Ren'Py Verification Tool

	4 Evaluation
	4.1 Experimental Setup
	4.2 Experiment Results
	4.3 Discussion
	4.3.1 Interpretation of the Results
	4.3.2 Applications

	5 Conclusion and Future Work
	A Appendix
	References

